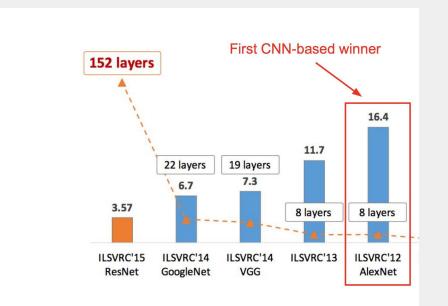
Size-Independent Sample Complexity of Neural Networks

Saurabh Mathur

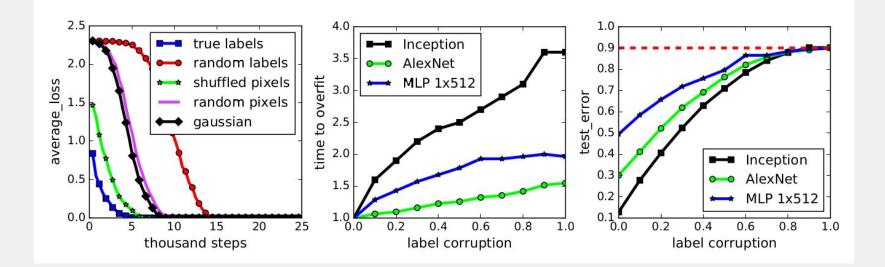
Authors: Noah Golowich, Alexander Rakhlin, Ohad Shamir

Contributions : Bounds on Rademacher complexity

- 1. Exponential to polynomial-in-depth bound for general neural network.
- 2. Depth-independent bound for case where weight norm is constrained.

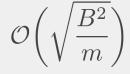


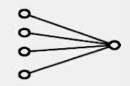
Network	#params
AlexNet	35K
VGG16	138M
GoogleNet	5M
ResNet	25M



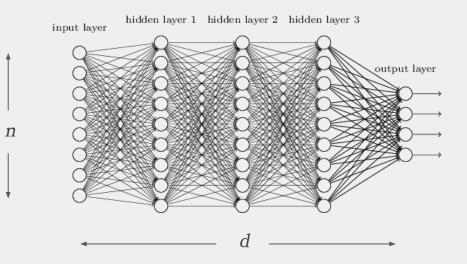
Can we bound the R(generalization error) for neural networks?

Simplest Case





 $\|w\| \le B$

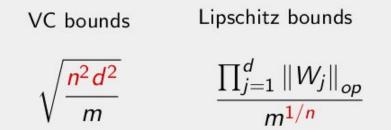


$$x \mapsto W_d \sigma_d(\ldots \sigma_2(W_2 \sigma_1(W_1 \boldsymbol{x})) \ldots)$$

 $\sigma: z \mapsto max\{z, 0\}$

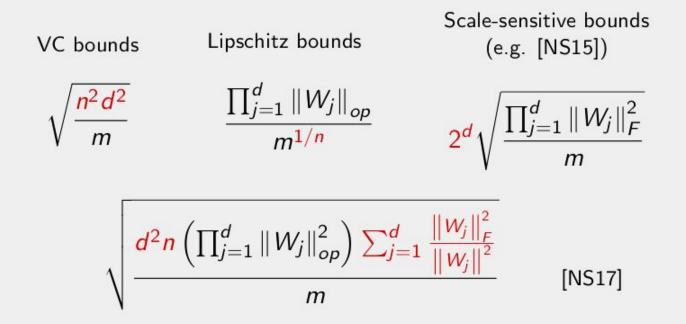
 $\mathsf{VC} \ \mathsf{bounds}$

 $\sqrt{\frac{n^2 d^2}{m}}$





$$\sqrt{\frac{\prod_{j=1}^d \|W_j\|_F^2}{m}}$$



VC bounds Lipschitz bounds Scale-sensitive bounds

$$\sqrt{\frac{n^2 d^2}{m}} \qquad \frac{\prod_{j=1}^d ||W_j||_{op}}{m^{1/n}} \qquad 2^d \sqrt{\frac{\prod_{j=1}^d ||W_j||_F^2}{m}}$$

$$\sqrt{\frac{d^2 n \left(\prod_{j=1}^d ||W_j||_{op}^2\right) \sum_{j=1}^d \frac{||W_j||_F^2}{||W_j||^2}}{m}} \qquad [NS17]$$

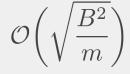
$$\sqrt{\left(\prod_{j=1}^d ||W_j||_{op}^2\right) \left(\sum_{j=1}^d \left(\frac{||W_j||_{2,1}}{||W_j||_{op}}\right)^{2/3}\right)^3}$$

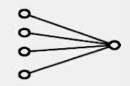
т

[BFT17]

Can we make our bounds independent of depth?

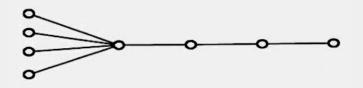
Simplest Case

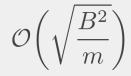




 $\|w\| \le B$

Thin Case





$\|w\| \le B$

Lower Bound

 $\Omega(\sqrt{\frac{B^2n}{m}})$

$$\prod_{j=1}^d \|W_j\|_{op} \le B$$

$$\Omega(\sqrt{\frac{B^2 n^{max\{0,\frac{1}{2}-\frac{1}{p}\}}}{m}})$$

$$\prod_{j=1}^{d} \|W_j\|_{p-schatten} \le B$$

Upper Bound

$$\mathcal{O}\left(\min\left\{\frac{B}{m^{1/4}}, \sqrt{\frac{dB^2}{m}}\right\}\right)$$

$$\prod_{j=1}^d \|W_j\|_F \le B$$

Interesting Tricks

- 1. Log Sum Exp
- 2. Eliminating depth-dependence using product of p-schatten norms

$$m \cdot \hat{\mathcal{R}}_m(\mathcal{H}_d) = \mathbb{E}_{\boldsymbol{\epsilon}} \left[\sup_{h \in \mathcal{H}_d} \sum_i \varepsilon_i h(\mathbf{x}_i) \right]$$

Introducing a parameter $\lambda > 0$,

$$m \cdot \hat{\mathcal{R}}_{m}(\mathcal{H}_{d}) = \mathbb{E}_{\epsilon} \left[\sup_{h \in \mathcal{H}_{d}} \sum_{i} \varepsilon_{i} h(\mathbf{x}_{i}) \right]$$
$$= \frac{1}{\lambda} \log \exp \left(\lambda \cdot \mathbb{E}_{\epsilon} \sup_{h \in \mathcal{H}_{d}} \sum_{i} \epsilon_{i} h(\mathbf{x}_{i}) \right)$$

Introducing a parameter $\lambda > 0$,

$$\begin{split} m \cdot \hat{\mathcal{R}}_{m}(\mathcal{H}_{d}) &= \mathbb{E}_{\boldsymbol{\epsilon}} \left[\sup_{h \in \mathcal{H}_{d}} \sum_{i} \varepsilon_{i} h(\mathbf{x}_{i}) \right] \\ &= \frac{1}{\lambda} \log \exp \left(\lambda \cdot \mathbb{E}_{\boldsymbol{\epsilon}} \sup_{h \in \mathcal{H}_{d}} \sum_{i} \epsilon_{i} h(\mathbf{x}_{i}) \right) \\ &\leq \frac{1}{\lambda} \log \left(\mathbb{E}_{\boldsymbol{\epsilon}} \sup_{h \in \mathcal{H}_{d}} \exp \left(\lambda \sum_{i} \epsilon_{i} h(\mathbf{x}_{i}) \right) \right) \end{split}$$

Introducing a parameter $\lambda > 0$,

$$\begin{split} m \cdot \hat{\mathcal{R}}_{m}(\mathcal{H}_{d}) &= \mathbb{E}_{\epsilon} \left[\sup_{h \in \mathcal{H}_{d}} \sum_{i} \varepsilon_{i} h(\mathbf{x}_{i}) \right] \\ &= \frac{1}{\lambda} \log \exp \left(\lambda \cdot \mathbb{E}_{\epsilon} \sup_{h \in \mathcal{H}_{d}} \sum_{i} \epsilon_{i} h(\mathbf{x}_{i}) \right) \\ &\leq \frac{1}{\lambda} \log \left(\mathbb{E}_{\epsilon} \sup_{h \in \mathcal{H}_{d}} \exp \left(\lambda \sum_{i} \epsilon_{i} h(\mathbf{x}_{i}) \right) \right) \end{split}$$

Using a contraction lemma variant and peeling as before:

$$\frac{1}{\lambda} \log \left(2^{d} \mathbb{E}_{\epsilon} \exp \left(\lambda \prod_{i} C_{\mathcal{W}_{i}} \cdot f(\mathbf{x}_{1}, \ldots, \mathbf{x}_{m}) \right) \right)$$

Theorem

If $\prod_{j=1}^{d} \|W_{j}\|_{F} \leq B$, generalization error is

$$\mathcal{O}\left(\sqrt{\frac{dB^2}{m}}\right)$$

Theorem

If
$$\prod_{j=1}^{d} \|W_{j}\|_{1,\infty} \leq B$$
, generalization error is

$$O\left(\sqrt{\frac{(d+\log(n))\cdot B^2}{m}}\right)$$

Interesting Tricks

- 1. Log Sum Exp
- 2. Eliminating depth-dependence using product of p-schatten norms

We can eliminate depth dependence using

- A bound for a network of depth r << d
- Composed with univariate Lipschitz function

The rth layer is replaced with its Rank-1 approximation.

(under some weak assumptions) we can modify network with $\prod_{j=1}^{d} ||W_j||_p \leq B$ by replacing one of first r matrices by rank-1:

$$\mathbf{x} \mapsto W_d \sigma(W_{d-1} \dots W_k \sigma(\dots \sigma(W_1 \mathbf{x}) \dots))$$

 \approx

$$\mathbf{x} \mapsto \underbrace{W_d \sigma(W_{d-1} \dots s \mathbf{u})}_{\text{Univariate Lipschitz func.}} \underbrace{\mathbf{v}^\top \sigma(\dots \sigma(W_1 \mathbf{x}) \dots)}_{\text{Depth} \leq r \text{ network}}$$

• r trades-off approximation and statistical complexity

Theorem

If
$$\prod_{j=1}^{d} \|W_j\|_F \leq B$$
, generalization error is
 $\tilde{\mathcal{O}}\left(B \cdot \min\left\{\frac{\log(B/\Gamma)}{m^{1/4}}, \sqrt{\frac{d}{m}}\right\}\right)$

Theorem (Depth-Independent Version of BFT17)

If $\prod_{j=1}^{d} \|W_{j}\|_{op} \leq B$, $\prod_{j=1}^{d} \|W_{j}\|_{p} \leq B_{p}$ and $\max_{j} \frac{\|W_{j}\|_{2,1}}{\|W_{j}\|} \leq L$, generalization error is

$$\tilde{\mathcal{O}}\left(BL \cdot \min\left\{\frac{\left(\log(B_p/\Gamma)\right)^{\frac{1}{\frac{3}{2}+p}}}{m^{\frac{1}{2+3p}}} , \sqrt{\frac{d^3}{m}}\right\}\right)$$